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Abstract

A modification of the kernel estimator for density estimation is proposed which
allows the incorporation of local information about the smoothness of the density.
The estimator uses a small set of local bandwidths rather than a single global one
as in the standard kernel estimator. It uses a set of filtering functions which deter-
mine the extent of influence of the local bandwidths. Various versions of the idea
are discussed. The estimator is shown to be consistent and is illustrated by compar-
ison to the single bandwidth kernel estimator for the case in which the filter func-

tions are derived from finite mixture models.
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1. INTRODUCTION
The kernel density estimator has been studied widely since its introduction in
Rosenblatt 1956 and Parzen 1962. Given iid. data x;,...x, drawn from the
unknown density o, the standard kernel estimator is the single bandwidth estima-

tor:

a(x) = ;}}_zi K(x—;lx—‘) (1)

i=1
Much work has been done on selecting the optimal bandwidth h under differ-
ent assumptions on o or different optimality criteria (see the recent books by Sil-
verman 1986 and Scott 1992, and the bibliographies contained therein, for a good
introduction to kernel estimators and bandwidth selection). Alternatively, variable

bandwidth kernel estimators are of the form

6(x) =1 lk[x;x"} , @)

or variations on this theme. One then requires a choice of many bandwidths, and
several approaches have been investigated. The obvious problem which may arise
in these variable bandwidth estimators is that it is not always clear how to best
incorporate a priori information about the local smoothness of the density into
these estimators. Furthermore, these estimators usually break down in the tails
where the data is sparse, and hence it is difficult to get good estimates of appropri-
ate local bandwidths.

We propose a modification to the standard kernel estimator (1), first introduced

in Rogers, Priebe, and Solka 1993, which uses a small number of bandwidths




instead of either extreme exemplified by equations (1) and (2).

Suppose we wish to have a small number of bandwidths where each bandwidth
is associated with a region of the support of the density. To each bandwidth we
associate a function which “filters” the data, in a sense to be described. Basically,
the filter will define the extent to which each local bandwidth is to be used for any
particular data point. We can then construct a kernel estimator which is a combina-
tion of the kernel estimators constructed using each bandwidth, with the data fil-

m

tered by the filtering functions. To be specific, consider a set of functions {p j}

i—1

where 0<p;(x)<1 for all x,

2P =1 3)

j=1
for all x as will be seen below. The p functions can be interpreted as posterior
probabilities and are used to incorporate prior information concerning local
smoothness. We will refer to the p functions as filtering functions. Associate to

each filtering function p; a bandwidth hj such that

O<hj
hj—>0 €Y

nhj—>oo

as n->e0, The filtered kernel estimator (FKE) for the filter {p j} " is
j=1

ZZp,(x) ( . ] 5

1—1]—1 f




The filtered kernel estimator comes from the following: given a finite mixture

m

f) = Y nf(x) ©)

j=1
and data {x;} with unknown density a(x), the kernel estimator filtered by the mix-

ture f is defined to be (6) where

5
pj(x) = ION (7)

The idea is to use a value of h for each component of f which is in some sense
optimal for that component under the overall mixture model (6) and thus vary the
bandwidth according to the individual variances of the filtering mixture. It is
appealing to make use of the posterior probability of component membership as
the local contribution for a given bandwidth. In practice, one would fit a mixture to
the data which one felt was a good representative of the local variance of the
underlying distribution, then use the mixture to construct bandwidths and a filtered
kernel estimator. This approach works well even when the data is not distributed as
a given finite mixture, provided that the mixture captures enough of the local vari-
ance characteristics of the data. Unfortunately, as will be seen, the calculation of
the bandwidths hj is not as simple as that for the standard kernel estimator (SKE),
and requires the minimization of a function whose solutions are not known in
closed form.

The pj(xi) term in equation (5) weights the contribution of the kernel centered
at x; by its posterior component membership. This is shown in Figure 1, where a

two component mixture density, an illustrative selection of kernels weighted by the




p; functions, and the p; functions themselves are shown.

An alternative to this formualtion can be obtained by considering a mixture of
kernel estimators in which the posterior probabilities p;(x) at the point being esti-
mated play the role of the mixing coefficients. This second approach allows the

incorporation of information about the support of the density. This estimator is

& (x) = Zp,(x)( - ZK[ XD ®)

j=1 Ji=1 J

which can be rewritten in the form of the filtered kernel estimator as

- _ 1 "X Pj(x) x—x‘-
e = ;z,'gu;lTj—K(_hj_)' ©)

We incorporate information of the support of a by the condition that pj(x) = 0

where o is known to vanish. We must have

—22 jp,(x)K( J =1 (10)

i=1j=1
in order to guarantee that the estimate is a density. Since the proportions are not
fixed, but are functions of x, we have a potentially different mixture for each x,
which allows the incorporation of local scaling of the estimator.

We draw explicit attention to the dichotomous views demonstrated in (5) and
(9). The estimator in (5) attributes the posterior component membership to the data
point at which we center the kernel while (9) focuses on the component member-
ship at the point at which we are computing the functional estimate. This type of

dichotomy is inherent in the standard kernel estimator but in this case leads to dis-




tinct estimators.

We will assume throughout the formulation (5) for the filtered kernel estimator,
unless otherwise noted. However, (9) might be of interest for those situations
where the density is known to vanish, for instance for densities of known support.
A combination of the two estimators (5) and (9) may in some situations be desired,
but we not be pursued here.

Although we are concerned here with univariate densities, the filtered kernel
estimator & (x) has an interesting extension to multivariate densities. Assume that
the kernel is a normal density and that the mixture (6) is a mixture of normals. For
each local bandwidth h;, we associate both the posterior probabilities from the
mixture (the filtering function) and the covariance of the j[h component Zj. Then
for each j, K is replaced with Kj, which is a normal with covariance Zj. Thus we
can take into account local structure as represented by the mixture approximation
to the density.

As always, we do not get something for nothing, and the filtered kernel estima-
tor is no exception. Although the asymptotics make almost no restrictions on the
choice of the filters and bandwidths, for finite samples these can be critical. In
order for the filtered kernel estimator to provide any improvement over a single
bandwidth kernel estimator (or anything else) we require filtering functions and
local bandwidths which are appropriate for the density to be estimated. As will be
shown in the examples below, this method works very well for densities that are
approximated reasonably well by a mixture model, provided one has a good

method for estimating the mixture model.




2. ASYMPTOTICS
Assume the conditions on the hj’s in eqn (4). Assume further that K(t) is a

bounded density with zero mean and finite second moment k,, that is,

jtK(r) dr =0
(11)
[Pk (ydr = ky<eo

Thm 1: Under the above conditions, & (x) and & (x) are weakly consistent.

pf:
Note that the theorem follows immediately from the consistency of the standard
kernel estimator for the estimator o. To show weak consistency for & we need to

show that both the bias and variance go to zero as n goes to infinity.

bias (&) = E&—a (12)

- zj[pj}fy)K(%’)]a(y) dy— 0. (x)

J

- Y pMa®-a@®) =0 (13)
j=1




by Bochner’s Lemma (Tapia and Thompson, 1978), since h; -> 0. Similarly,

Var@m) = 3, Var( 5 2% K[x;xj)

j=1

o 3 E B

]

_ }é‘: éj.p, ) Pk(y)K( : )K(x;ky)a(y)dy

k

With a little manipulation we have
< sup (K (1)) (K (1)
syt il (7 e
j=1k=11J

g@gK_(le a(x)k, >0 (14)
j=1 i




since nh; --> eo for all j.

Thm 2: Under the same conditions as theorem 1 and assuming the existence of sec-
ond derivatives of o and pj, and that the second derivative of o is in L, the filtered

kernel estimator & (x) is L, consistent.
pf: Recall that the mean integrated squared error (MISE) can be written as
MISE (&) = [bias" (&) +Var(6). (15)

So, we have

bias (&) = ZJ[ k(52 P00 |ar-ac

j=1

= 2][1((:) p; (x—hit) o (x - hit) 1di— (%)

j=1
" 2h2 g%
~ ZJ[K(r) {a@p;(x) - (a(x)p,(x)) h 2(oc(x)pjoc))}}zz-cx(x)
k d
= -2_2 s (a(x)p;(x)), (16)
and so




[bias® (&) ~—2 2h2h2jd 2(oc(x)p,(x)) (a(x)pk(xndx.

j=1k=1

Choosing hj=hy=n""/2 yields an of order O(n’?).

In the case of the variance we have

Var (&) = ’—11 r[ Z pj}f.y) K(u)J
J

_ 1 ” p; (y) x—y 2 1{ n p.(y) xX-y }2
e 2 e )
and so
A 1 z pj()’) X 2 )
var@ = 3| % K(52))roraro
P
I 3 DL (=M (290 0 (v dy
n1§1k§1hjhkj ( hj ) ( hy )p’ PR EE
Letting
g (hy ) jK(é)K(}i)d;,
we have

g(,k)

[p; P ady.

IVar(a) == Z z

jlkl

10

17

(18)

(19)

(20)

21)




Finally, assume without loss of generality that h; is less than or equal to by, then

g(hyhy) = f"(if'j)’((hik)dt
= th(u)K[gl Jdu

h;
<hsup (K (1) )j [—-—quu

k

= hsup (K (1))
and so

g (hy k) <min (b, by sup (K (1)), 22)

so the integrated variance is of order (n min (h)) -l which can be made O(n'm).

Combining equations (17) and (21) we have

2 m m
222 z ] @ 0 0, 00) 5 (0 (0 () e+
MISE = j=1lk= 3
I w &k 2 Uy 1y hy)
a2 X 0 maema
j= =

Thus, MISE — 0, at a rate no worse than O(n'l/z). As in the case of the standard

kernel estimator, the optimal rate is O(n'4/5).
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Thm 3: With the same conditions as Theorem 2, ¢ is L, consistent.

pf:

Following the calculations in theorem 2 and noting that the p; are bounded

above by 1, we have

2 m m
[bias” (&) —722 2 B2h2[p; () p, (1) (0" (1)) i, 24)

which is of order O(n™2).

For the variance, we have

i o = & (R hy)
JVar () € %j;l kgl —-——hj’h—kk- , (25)
which is once again of order (n min(h,)) -1, Thus we have MISE — 0 at a rate
of O(n"/2), with optimal rate O(n™*?).

For the rest of this paper we will consider the estimator (5), which will be
referred to as the FKE. Note that given any filter, for the optimal choice of the h;
we have MISEpgg < MISEgkg. This is a trivial consequence of the fact that the

FKE subsumes the SKE, when we take all the hj ’s to be equal.

3. SPECIAL CASE: NORMAL KERNELS

We now assume that the kernel K is the standard normal. In this case we can com-

12




pute g() and obtain

hihy

hh— )
8 (hy 1) fnﬁm‘z

(26)

In keeping with the ideas discussed in the introduction, we assume in this sec-

tion that o is a mixture of normals, and that the filtering functions are generated by

the same mixture. Equation (23) then becomes, using the notation of equation (6)

(k2m m

72 X mmRRff (0 f (0 dx+

Jj=lk=1

i W J'f()’)fk()’)

1
"'ﬁ?‘ 1k—1,/h +hk ()

MISE =

At this point we introduce some notation.

Ajk = njnkjf'j (x)f'k (x)dx ,

f; (X) f (x)
Bjk = TCjTCk ’——(—x—?y)—dx

This gives the equation

2 m m
MISE ~ k2 Ajh?hE + .
4 g’ g nﬁj;lk;l /h}2+h,%

13
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(28)

(29)

(30)




Taking the partial with respect to h; we have

0 2, ,3 1.2 2 B h B,,
=—MISE = kA, h +§k2hr2Akrhk— =

r
, ey .61
oh, nr k#r 2n,fT_Ch::' n‘\lznk#r( h2+hi)3
A’ ,

Equations (30) and (31) are used in the next section to compute the optimal
bandwidths and MISE of a number of examples. Note that this must be done
numerically, since we do not have a closed form solution to the problem of mini-
mizing (30).

In practice the true underlying mixture is not known, and in fact the data may
not come from a mixture at all. In this case it may not be clear how to apply the
above formulation and calculate the desired local bandwidths, not the least because
the Ajc and By require o to be a known mixture. We propose the following
approach to this problem: we first approximate the unknown density as a mixture,
then minimize (30) to calculate the bandwidths under the assumtion that the filter-
ing density is the true density. Thus we use the optimal values for h; under the
assumption that the filtering mixture is correct. This is analogous to using a refer-
ence density such as a normal to compute the bandwidth for the standard kernel
estimator. As in the case of the standard kernel estimator, our estimate will only be
optimal if the filtering mixture is indeed correct, but it will be a useful estimate as

long as the data is close to the filtering mixture.

4. EXAMPLES
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We compare the MISE of the FKE with the standard kernel estimator with h
chosen optimally. When simulations are performed, the bandwidths are chosen by
numerically minimizing (30). Following Wand, Marron, and Ruppert 1991, we
compute the efficiency of the estimator as MISEggp/MISEgkg so small values of

the efficiency correspond to better estimates with the FKE.

Case 1: Two means.
Let
a(x) = %N(O, 1) + %N(m, 1 (32)

It is easy to see that in this case the optimal bandwidth choice for the FKE requires
hy = h, = hgng, and so MISEggg = MISEqkE and the efficiency is 1. This is intu-
itively what should happen, since the FKE is designed to incorporate differences in
variance of the underlying mixture components, and so it will give no improve-

ment in cases where the components differ only in mean.
Case 2: Two variances.

Let
a(x) = %N(O, 1 +%N(0, V), (33)

with .1 £ v < 10. Figure 2a shows the efficiency as a function of the variance. Note
that for v # 1, the FKE improves on the SKE, as one would expect. Figure 2b
shows the two bandwidths used in the FKE. The bandwidth associated with the

second mixture term, the term for which we vary v, dramatically changes accord-
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ing to v.

This is essentially the case that the FKE was designed to address. We have a
density which is a mixture of two normals with unequal variances. As the variance
of the second term is moved away from the variance of the first term, the standard
kernel’s single bandwidth becomes less and less appropriate for the resulting den-
sity. The filtered kernel estimator allows us to take the two variances into account
in our estimator, thus improving the estimate when the variances are significantly

different.

Case 3: Outlier model

Let
o(x) = pN(0,1) + (1-p)N(0,100), (34

with .01 < p £.99. Figure 3shows the efficiency for this model as a function of p.
Again we see that the FKE improves over the standard kernel provided 0 <p < 1.

Clearly the estimators are equal when p=0 or p=1.
Case 4: Marron and Wand Densities

Marron and Wand 1992 list 15 normal mixture densities showing some of the
wide range of variations that are obtainable with simple mixtures. Table 1 shows

the efficiency of the FKE for these densities. Note that the performance of the FKE

depends on the amount of local variability of the mixture, as would be expected.
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The above examples dealt with the theoretical properties of the FKE, where the
filter is assumed to be equal to the underlying density. In practice this is not possi-
ble, and in fact if the underlying density is known any attempts at estimation are
obviously unnecessary. In the next two examples we consider the case where the
underlying density is not known, and in fact in at least one (case 5) it is known not
to be a mixture of normals at all. In these cases we first fit a mixture to the data to
obtain a reasonable filter. Then we compute the h; under the assumption that the
filter is equal to the density. In practice, as will be seen below, this provides a good
estimator provided the filtering mixture captures most of the underlying variability

of the data.

Case 5: Lognormal.

100 data points were drawn from a lognormal and a two component mixture
was fit to the data using the EM method (see, e.g., Titterington, Smith, and Makov
1985). The bandwidths for the filtered kernel estimator were chosen assuming the
filter to be equal to the true density. Thus we first construct the mixture estimate
and then use the bandwidths that would be optimal for that mixture density, in
much the same way that one might use a normal density as a reference estimate for
the standard kernel estimator.

Figure 4a shows the density estimates for the standard kernel estimator and the
FKE. The bandwidths for the FKE were h; = .4 and h, = 2.2. The bandwidth for
the standard kernel estimator was chosen by hand to get a reasonable fit to the true

density. The plot shown uses a value of .2 for h, which is about five times the
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“optimal” value for a lognormal using 100 data points. Figure 4b compares the

density estimates of the FKE and the filtering mixture.
Case 6: Suicide Data.

Silverman 1986 uses a data set of lengths of treatment spells in days of control
patients in a suicide study to illustrate the kernel estimator. We fit two normals to
the data using the EM algorithm and use this as the filter for the FKE, as was done
with the lognormal example. We compare the estimator with the two kernel esti-
mators Silverman uses, bandwidths = 20 and 60 in figure 5a. The FKE uses the
bandwidths h; = 19.17 at the mode and hy = 127.17 in the tail. It is noteworthy that
these bandwidths correspond to Silverman’s choices of h¥20 to get pleasing results
in the mode at the expense of tail smoothness and double Silverman’s h=60 chosen
to yield a smooth tail. The FKE is compared with the mixture approximation in
Figure 5b. Note that the FKE allows a good fit to the mode while maintaining the
smoothness of the tail. The mode smoothness can be varied by varying the appro-
priate bandwidth (h;) without having much effect on the fit to the tail, as can be
seen by the plot of the filtering functions in Figure 5c. This figure makes clear the
local character of the bandwidths in the FKE. This is also illustrated in Figure 5d,
where the bandwidth associated with the mode is reduced, making the mode more
pronounced and rough without effecting the tail smoothness. It is this ability that

makes the FKE a very interesting, and we feel useful, estimator.

5. CONCLUSIONS
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The filtered kernel estimator is superior in performance to the standard kernel
estimator, provided appropriate filter functions and bandwidths can be chosen. In
section 2 it was shown that any filter functions will give asymptotic performance
no worse than the standard single bandwidth kernel estimator.

It would seem at first that the added trouble of selecting filtering functions and
bandwidths would make the estimator difficult to use in practice. However the idea
of using a finite mixture fit to the data to construct the filters is one which appears
to work well in a variety of situations, even those for which the data is not drawn
from a finite mixture. The ability to take local structure into account is a powerful
one which will allow much better estimates in those situations where there is rea-
son to believe the local structure is justified.

It should be noted that bad filters produce bad FKE’s. This is not unreasonable,
however it does mean that care must be used in the choice of the filtering mixture.
Just as the standard kernel estimator produces errors when the bandwidth is taken
to be too large or too small, mixtures which have terms which are not supported by
the data will produce local errors in the FKE estimate. This local character of the
estimator gives some protection, since the effect of the error is reduced outside the
region in which the corresponding p dominates. This is in contrast to the single
kernel estimator where the choice of the bandwidth has a global effect.

We have focused on the univariate case in this work, but other extensions are
possible. The multivariate vcrsion' of the FKE has much promise, and will be
addressed in the future. The ability to effectively tune the kernels to the local struc-
ture of the data will be a powerful and useful tool for multivariate density estima-

tion. It is believed that this ability to define the structure locally will be of use in
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exploritory data analysis and in discriminant analysis.
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Table 1:

Density Efficiency
Gaussian 1
Skewed Unimodal .60
Strongly Skewed 38
Kurtotic Unimodal 44
Outlier 91
Bimodal 1
Separated Bimodal 1
Skewed Bimodal .69
Trimodal 90
Claw .63
Double Claw 13
Asymmetric Claw 30
Asymmetric Double Claw 15
Smooth Comb 41
Discrete Comb 5
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A@Akﬂﬁm.

Figure 1
An example of the filtered kernel estimator applied to a two component mix-
ture. The mixture probability density function, weighted kernels, and poste-

rior p functions, are shown.
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MISE FKE/SKE
0.80 0.85 0.90 0.95 1.00
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0.70

Figure 2a
Efficiency as a  function of  variance for case 2
a(x) = %N (0,1) + %N (0,v) . As v deviates from 1 the standard kernel’s
single bandwidth becomes less and less appropriate for the resulting density.
The filtered kernel estimator allows us to take the two variances into account
in our estimator, thus improving the estimate when the variances are signifi-

cantly different.
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bandwidth

Figure 2b
The two bandwidths used in the FKE. The bandwidth associated with the
second mixture term (solid line), the term for which we vary v, dramatically
changes with v allowing the FKE to model the local variance structure of the

underlying density.
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Figure 3
Efficiency as a function of p for the outlier model (case 3):
a(x) = pN(0,1) + (1-p)N (0, 100) . As p runs from .01 to .99 the FKE
improves over the standard kernel estimator because the underlying density

has nonconstant local variance structure.
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Lognormal Data
Figure 4a

Density estimates for the standard kernel estimator and the FKE, along with

the true lognormal density from which 100 sample observations were drawn

(case 5). The bandwidths for the FKE are h; = .4 and h; = 2.2. The bandwidth

for the standard kernel estimator (h=.2) was chosen to get a reasonable fit to

the true density.
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Density Estimate
4

Lognormal Data

Figure 4b

The FKE, the filtering mixture, and the true lognormal density from case 5.
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0.006

—— Fittered Kerne!
--== Standard Kerne! h=20
—=—- Standard Kernel h=60

0.004

Density Estimate

0.002

0.0

Suicide Data
Figure 5a

Case 6: suicide data from Silverman 1986. A mixture of two normals is used as

the filter for the FKE. The FKE is compared with standard kernel estimators

using bandwidths of 20 and 60. The FKE uses the bandwidths h; = 19.17 at the

mode and hy = 127.17 in the tail and combines the features of the two SKEs -

detail in the mode and smoothness in the tail.
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Figure 5b
Comparison of the FKE from Figure 5a and its associated mixture approxima-

tion.
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Figure 5c
The filtering functions p defined by the mixture estimate shown in Figure 5b.
These posterior functions dictate the local character of the bandwidths in the

FKE, and indicate that the local smoothness can be varied by varying the

appropriate bandwidth without having much effect on the fit in other regions.
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Figure 5d
An example of local selective tuning. For the FKE shown in Figure 5a (dashed
line) the bandwidth associated with the mode has been reduced, making the
mode more pronounced and rough without effecting the tail smoothness. This

is due to the effect of the filtering functions shown in Figure 5c.
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